UNIVERSITY OF

OXFORD

Model Repair for Markov Decision
Processes

Marta Kwiatkowska

Department of Computer Science, University of Oxford

TASE 2013, Birmingham

Joint work with: T. Chen, E.M. Hahn, T. Han, H. Qu and L. Zhang

Software everywhere

- Electronic devices, ever smaller

— Laptops, phones, sensors...
- Networking

— Wireless & Internet everywhere
- Intelligent spaces

— Buildings, vehicles...
- Systems

— Adaptive

— Context-aware

— Self-*

- From hardware and software, to everyware
— Household objects do information processing
— Software is central

Software quality assurance

Software is a critical component of embedded systems
— software failure costly and life endangering
Need quality assurance methodologies
— model-based development
— rigorous software engineering
— software product lines
Use formal techniques to produce guarantees for:
— safety, reliability, performance, resource usage, trust, ...
— (safety) “probability of failure to raise alarm is tolerably low”

— (reliability) “the smartphone will never execute the financial
transaction twice”

Focus on automated, tool-supported methodologies

— automated verification via model checking
— quantitative verification

Rigorous software engineering

Verification and validation

— Derive model, or extract from software artefacts
— Verify correctness, validate if fit for purpose

Formal Verification Model
specification | >

il

| > System

Validation

(]
2
©

S

=

o
L

Abstract
ouljay

Simulation

Informal
requirements

Quantitative (probabilistic) verification

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

Probabilistic model — 5 Result
System e.g. Markov chain /x
0.5 10.4
— 0.1 Quantitative
results

Probabilistic _’*
model checker LY et

,,,,,,,,,,

— og.PRSM — o
J
Qoo:: Poor [F=t fail] | =— Counter-
I — L) example
reyS (_am_ Probabilistic temporal
quire loai ficat o
ments ogic specification o0

e.g. PCTL, CSL, LTL 5

Why quantitative verification?

- Real software/systems are quantitative:
— Resource constraints

. energy, buffer size, number of unsuccessful transmissions, etc

— Randomisation, e.qg. in distributed coordination algorithms
. random delays/back-off in Bluetooth, Zigbee

— Uncertainty, e.g. communication failures/delays
. prevalence of wireless communication

- Analysis “quantitative” & “exhaustive”

0.8

— strength of mathematical proof 5
= 0.6

— best/worst-case scenarios, not E
possible with simulation £ 04

——maximum
- - -average

' —— minimum
300 1000 1200 T 1400 1600 1800

o
n

— identifying trends and anomalies

6

Quantitative properties

- Simple properties
— P_g o1 [F “fail”] - “the probability of a failure is at most 0.01”

- Analysing best and worst case scenarios

— P> [F510 “outage”] - “worst-case probability of an outage
occurring within 10 seconds, for any possible scheduling of
system components”

— P_,[G=0-02 I"deploy” {“crash’{max}] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

Reward/cost-based properties
— Reimen—» [F “end”] - “expected algorithm execution time”

— Ryenergyimax=? [C=72%°] - “worst-case expected energy
consumption during the first 2 hours”

Historical perspective

First algorithms proposed in 1980s
— [Vardi, Courcoubetis, Yannakakis, ...]
— algorithms [Hansson, Jonsson, de Alfaro] & first implementations

- 2000: tools ETMCC (MRMC) & PRISM released

— PRISM: efficient extensions of symbolic model checking
[Kwiatkowska, Norman, Parker, ...]

— ETMCC (now MRMC): model checking for continuous-time Markov
chains [Baier, Hermanns, Haverkort, Katoen, ...]

- Now mature area, of industrial relevance

— successfully used by non-experts for many application domains,
but full automation and good tool support essential

. distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning...

— genuine flaws found and corrected in real-world systems

Quantitative probabilistic verification

- What’s involved
— specifying, extracting and building of quantitative models
— graph-based analysis: reachability + qualitative verification
— numerical solution, e.g. linear equations/linear programming

— typically computationally more expensive than the non-
quantitative case

- The state of the art
— fast/efficient techniques for a range of probabilistic models
— feasible for models of up to 107 states (109 with symbolic)
— extension to probabilistic real-time systems
— abstraction refinement (CEGAR) methods
— probabilistic counterexample generation
— assume-guarantee compositional verification
— tool support exists and is widely used, e.g. PRISM, MRMC

Tool support: PRISM

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source software (GPL), runs on all major OSs
- Support for:
— models: DTMCs, CTMCs, MDPs, PTAs, SMGs, ... | §
— properties: PCTL/PCTL*, CSL, LTL, rPATL, costs/rewards, ..
Features:
— simple but flexible high-level modelling language
— user interface: editors, simulator, experiments, graph plotting
— multiple efficient model checking engines (e.g. symbolic)
Many import/export options, tool connections
— MRMC, INFAMY, DSD, Petri nets, Matlab, ...

- See: http://www.prismmodelchecker.orqg/

10

Quantitative verification in action

- Bluetooth device discovery protocol 0
— frequency hopping, randomised delays

— low-level model in PRISM, based on
detailed Bluetooth reference documentation

— numerical solution of 32 Markov chains, ; |Rd|f tha)
. I expected time to hear two replies (sec
each approximately 3 billion states

— identified worst-case time to hear one message

N

—
(%)

—_

number of states

b
o

(=)

- FireWire root contention
— wired protocol, uses randomisation
— model checking using PRISM

— optimum probability of leader election
by time T for various coin biases

— demonstrated that a biased coin can improve performance

11

This lecture...

- What to do if quantitative verification fails?

Majority of research to date has focused on verification
— scalability and performance of algorithms
— extending expressiveness of models and logics
— real-world case studies

- Some work to date on counterexamples [Han&Katoen 2009,
Aljazzar&Leue 2009]

— need to capture two types of branching
— but difficult to represent them compactly
In this lecture, we focus on model repair

— can we fix the model to guarantee that a quantitative property
is satisfied?

— adjust parameters, potentially for use at runtime
12

Quantitative (probabilistic) verification

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

Input probabilistic model — Result
System e.g. Markov chain /x
f"-“ r— 0.5 ¥ 0.4
— 0.1 Quantitative
results

Probabilistic _’*
model checker LY et

,,,,,,,,,,

—> c.g. PRISM y L

e® : P_o.01 [F=t fail] | =——

QS t
ystem S
require- Probabilistic temporal

logic specification
e.g. PCTL, CSL, LTL

ments

Overview

Model repair
— problem statement
— parametric probabilistic models
— property specifications: probability/expectation

Region-based method
— constraint-based approximate solution

Sampling-based methods
— randomised search through the parameter space
— Markov chain Monte Carlo, Cross-Entropy and Particle Swarm

Case study: network virus

14

Probabilistic models

Discrete-time Markov chains (DTMCs)
— discrete states + probability
— for: randomisation, component failures, unreliable media

Markov decision processes (MDPs) <4—— this talk
— discrete states + probability + nondeterminism
— for: concurrency, control, under-specification, abstraction

- Stochastic multi-player games

- Continuous-time Markov chains (CTMCs)

Probabilistic timed automata (PTAS)

Labelled Markov processes (LMPs)
— and many other variants...

15

Markov decision processes (MDPs)

Useful for modelling e.qg. distributed protocols with failure
or randomisation

- An MDP is a tuple M = (S, s, Act, P, L, 1):

— S is the state space {ok} {ok}
warn

— Sy € Sis the initial state
— Act is finite set of actions

— P: S x Act xS — [0,1] is the
probability matrix

shutdown

— L is labelling with atomic propositions
— R:S X Act — Real_, is a reward structure
such that
— each row of P sums up to O or 1
— for every state s, at least one a is enabled in s
16

Probabilistic model checking for MDPs

- To reason formally about MDPs, we use adversaries
— an adversary o resolves nondeterminism in a MDP M
— also called “scheduler”, “strategy”, “policy’, ...

— makes a (possibly randomised) choice, based on history

— induces probability measure Pr,,° over (infinite) paths

Property specifications: probabilistic and expected reward
— specify probabilistic property P_ [¢] in PCTL, ¢ path property
— Pry° () gives probability of & under adversary o
— best-/worst-case analysis: quantify over all adversaries
— e.g. M = P_[G “ok™] & Pry°(G “ok™) = p for all o
— or just compute e.g. Pry,™" () = inf { Pry,° (G “ok”) | o € Adv,, }
— efficient algorithms and tools exist

— Reward properties involve computing expectations
17

Model repair: problem statement

- Assume we have an MDP...

{ok} {ok}
war

- which does not satisfy a given property, e.g.
— M ¥ P_(0[G “0k’]

- We wish to repair this model so that it does

- Solved for discrete-time Markov chains wrt reachability or
expected accumulated rewards in [Bartocci et al 2011]

18

Main idea

Transform to a parametric MDP
— by adding parameters to each transition that we can modify

{ok} {ok}
warn

Mparam<xay>: shutdown shutdown

Find instantiations v of parameters such that
— Myaam<Vv> satisfies property, ie M, ., <v> IF P_,0[G “0k’], and

— some objective function f(v) is minimal (repaired model is nearest
wrt to some cost/distance measure)

— e.g. f(x,y) = x2 + y? (sum of squares) 19

Our contribution

Unfortunately the methods developed for DTMCs do not
transfer to MDPs

— cannot guarantee existence of single rational function over
parameters

- We extend model repair to general MDPs by approximating
the solution

- Consider both probabilistic and reward properties
- Two complementary approaches implemented in PRISM

Region-based approach

— based on computing functions describing property depending
on parameters using constraint programming

- Sampling-based optimisation
— stochastic search through the parameter space
— may vield a suboptimal solution but faster
20

Formally...

Given
— V set of variables, span(V) set of linear expressions over V
— PCTL formula ¢
— MDP M = (S, sy, Act, P, L, r) s.t. M &
— 7Z: S X Act X S — span(V) transition repair matrix
— 7: S X Act — span(V) reward repair matrix

Define parametric MDP M’ = (S, s, Act, P+Z, L, r+2z)

- The model repair problem for MDP M, formula ¢ and
polynomial g over variables V is to find evaluation
v: V — Real satisfying

— Vv € arg min g<v> (minimise cost)

— v is a valid evaluation (yielding a valid MDP)

— M'<v> E ¢
21

Fast model repair

Many practical situations demand fast parameter
adaptation, typically at runtime, to guarantee some
performance property, e.g.

— self-adaptive systems
— replacement of failed component in multiprocessor systems

Fast model repair is defined, for b a real-valued bound, Q a
penalty function, as finding an evaluation satisfying

— g<v>+Q<v> < b and
— running time should be fast, trading off optimality

- The value of b is typically small to keep cost of repair
sufficiently low though suboptimal

— b=0.0 allowed but may result in slower repair
22

Region-based approach

Building upon method developed earlier for parametric
Markov processes in [Hahn, Han and Zhang 2011]

— finding parameter values to guarantee satisfaction of a PCTL
formula

— assume parameter range, ie interval of values [l,u]
— allows working with hyper-rectangles

Does not apply to model repair...
— need to ensure probabilities are nonnegative

— problem if repair matrix increases two transitions while
decreasing another by the same amount

— i.e. constraints are triangles
Obtain approximate solution...

23

More on region-based approach

Encode the validity of parameter valuations into the
formula, ¢4 , and derive PMDP M’ as before

Repeatedly subdivide regions into those for which the
property is valid, invalid and undecided

— point x;=x,=0 is the original (unrepaired) model

Use constraint solving to compute approximate e-solution
(fraction of the parameter space left undecided)

- Can evaluate repair cost g at vertices, then take minimum
of those values to obtain lower bound

repaired
model

original
model

24

Sampling-based approach

- Three methods based on randomised search

- Work with the formulation, for bound b:
— g<v>+Q<v><b

- where

— Q is a penalty function defined by
Q<v>=0if M'<v> [E ¢ and otherwise some value d
— used to guide the search towards good valuations

- Challenge: we draw samples according to an unknown
probability distribution

— pd(v) = e POV
— where O is the objective function, B weighting factor
— so need to adapt the three methods to this scenario

— use threshold for maximum number of samples, terminate the
procedure when good sample reached

25

Markov chain Monte Carlo

Use the Metropolis-Hastings algorithm

Generates a series of samples
— linked in a Markov chain

— each sample correlated only with the directly preceding
sample

— in the long run, the distribution matches the desired
probability distribution pd

Performs random walk about the sample space, sometimes
accepting and sometimes not

1* proposal

(e
- + discard
Initial st

sample
‘z'% _ 6® ppsl. 5* ppsl.

2" proposal : : good
sample

26

Cross-Entropy method

. Starts from a family of distributions and attempts to find a
distribution which is as close as possible to pd

— use Kullback-Leibler (KL) divergence measure

- Works as follows

— partition the parameter space into cells, parameterised by
probability that a point from cell is sampled

— generate samples based on the candidate distribution

— tilt the samples towards the new distribution, by minimising
KL distance over samples

27

Particle swarm optimisation

Based on movement of a bird flock

Swarm of n particles
— each with velocity, indicating where it is moving to

Update the velocity vector by randomised combination of
— direction to the best position of i-th particle, and
— direction to best global particle position

- Terminate when norm of velocity smaller than €

28

PRISM support

Implemented both the region-based and sampling
approaches in PRISM

— ‘explicit’ engine, written in Java
— region-based approach is a reimplementation of PARAM 2.0
— sampling-based approaches are new implementation
— to be included in a forthcoming release
Input models specified as parametric PRISM models
— parameters expressed as unevaluated constants
— e.g. const double x;
— repairable transition specified as 0.4 + x
— general purpose, other types of usage
Properties are given in PCTL, with parameter constants
— new construct constfilter (min, x1*x2, prop)

— filters over parameter values, rather than states
29

Case study: network virus

Parametric model of a network virus
— a grid of connected nodes

(1,1). (1'2)# (1'3)0 high nodes

— virus spawns/multiplies
— once infected, virus

' + # barrier nodes
repeatedly tries to spread ~ ©* 2.2) (2.3)
to neighbouring nodes | | e d
— there are ‘high’ and ‘low’ (3.1) 3.2) (33" low nodes

nodes, with barrier nodes from ‘high’ to ‘low’
— choice of infection by virus probabilistic
— choice of which node to infect nondeterministic
Property specification

— minimal expected number of attacks until infection of (1,1),
starting from (N,N), is upper bounded by 20

— probability of detection and of barrier nodes subject to repair
by increasing pjhagg aNd Ppaadg
30

Case study: region-based methods

0.3

40

30

=~ (0.02044

20

A

i 1;Ulhaclcl 0.2

0.30 0 ~ 000902

Plot of minimal expected Checking if minimal exp.
number of attacks number of attacks >= 20

Property constfilter(min,...,Ruqiacksns—20 [F “inf=117])
Model has 809 states, € = 0.05

Optimal value found in 2mins, showing repair values
31

Case study: sampling-based methods

- Need to work with the formulation g<v>+Q<v> < b

- Test two bounds, b = 0.0 and b = 0.0225

— MCMC slower for bound b = 0.0, can be unstable for the
larger bound

— both CE and PSO are stable
— PSO better performance

- Sampling methods have superior performance wrt region-
based methods

— all terminate within 20s, vs 2 mins for region-based
— 200-500 samples
— PSO mostly able to finish in 5s

- Hence, demonstrated practical applicability for online
model repair

— trading optimality for speed
32

Conclusions

Formulated and proposed approximate solution to model
repair for Markov decision processes

— MDPs widely used to model network and security protocols,
distributed systems with failure, etc

— parametric models integrated within PRISM
— full PCTL with the reward operator

Demonstrated
— sampling-based model repair feasible for runtime use
— but scalability is still the biggest challenge

Model repair for other probabilistic models

— also adapted to Markov reward models, work in progress
— incl. DTMCs and CTMCs (via discretisation)
33

Quantitative verification - Trends

Being ‘younger’, generally lags behind conventional
verification

— much smaller model capacity
— compositional reasoning in infancy
— automation of model extraction/adaptation very limited

- Tool usage on the increase, in academic/industrial contexts
— real-time verification/synthesis in embedded systems
— probabilistic verification in security, reliability, performance

Shift towards greater automation
— specification mining, model extraction, synthesis, verification, ...

But many challenges remain!

34

Future directions

- Many challenges remain

— computational runtime steering, away from danger states, in
addition to online model repair

— effective model abstraction/reduction techniques
— scalability of monolithic/runtime verification
— approximate methods
- More challenges not covered in this lecture
— correct-by-construction model synthesis from specifications
— controller synthesis

— more expressive models and logics
— code generation
— new application domains, ...

- and more...

35

Acknowledgements

My collaborators in this work

Project funding
— ERC, EPSRC LSCITS
— Oxford Martin School, Institute for the Future of Computing
- See also
— PRISM www.prismmodelchecker.org

_ VE\BWVAR[WWww.veriware.org

36

