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Software everywhere

• Electronic devices, ever smaller

− Laptops, phones, sensors…

• Networking

− Wireless & Internet everywhere 

• Intelligent spaces

− Buildings, vehicles…

• Systems

− Adaptive

− Context-aware

− Self-* 

• From hardware and software, to everyware

− Household objects do information processing

− Software is central
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Software quality assurance

• Software is a critical component of embedded systems

− software failure costly and life endangering

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Use formal techniques to produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial 
transaction twice”

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative verification
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Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

ModelModelModelModel
FormalFormalFormalFormal
specificationspecificationspecificationspecification

SystemSystemSystemSystem
ValidationValidationValidationValidation
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Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [ F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative 
properties of probabilistic system models
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Why quantitative verification?

• Real software/systems are quantitative:

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive” 

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies
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Quantitative properties

• Simple properties

− P≤0.01 [ F “fail” ] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios

− Pmax=? [ F≤10 “outage” ] – “worst-case probability of an outage 
occurring within 10 seconds, for any possible scheduling of 
system components”

− P=? [ G
≤0.02 !“deploy” {“crash”}{max} ] - “the maximum 

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [ F “end” ] – “expected algorithm execution time”

− R{“energy”}max=? [ C≤7200 ] – “worst-case expected energy 
consumption during the first 2 hours”
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Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking 
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov 
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains, 
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols, 
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems
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Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically  computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems 

− abstraction refinement (CEGAR) methods

− probabilistic counterexample generation 

− assume-guarantee compositional verification 

− tool support exists and is widely used, e.g. PRISM, MRMC
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Tool support: PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL/PCTL*, CSL, LTL, rPATL, costs/rewards, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

• Many import/export options, tool connections

− MRMC, INFAMY, DSD, Petri nets, Matlab, …

• See: http://www.prismmodelchecker.org/
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Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message  

• FireWire root contention

− wired protocol, uses randomisation

− model checking using PRISM

− optimum probability of leader election 
by time T for various coin biases

− demonstrated that a biased coin can improve performance
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This lecture…

• What to do if quantitative verification fails?

• Majority of research to date has focused on verification

− scalability and performance of algorithms

− extending expressiveness of models and logics

− real-world case studies

• Some work to date on counterexamples [Han&Katoen 2009, 
Aljazzar&Leue 2009]

− need to capture two types of branching

− but difficult to represent them compactly

• In this lecture, we focus on model repair

− can we fix the model to guarantee that a quantitative property 
is satisfied?

− adjust parameters, potentially for use at runtime
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Quantitative (probabilistic) verification

Input probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Repaired model

System
require-
ments

P<0.01 [ F≤t fail]
0.5

0.3

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative 
properties of probabilistic system models
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Overview

• Model repair

− problem statement

− parametric probabilistic models

− property specifications: probability/expectation

• Region-based method

− constraint-based approximate solution

• Sampling-based methods

− randomised search through the parameter space

− Markov chain Monte Carlo, Cross-Entropy and Particle Swarm

• Case study: network virus
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Probabilistic models

• Discrete-time Markov chains (DTMCs)

− discrete states + probability

− for: randomisation, component failures, unreliable media

• Markov decision processes (MDPs)

− discrete states + probability + nondeterminism

− for: concurrency, control, under-specification, abstraction

• Stochastic multi-player games

• Continuous-time Markov chains (CTMCs)

• Probabilistic timed automata (PTAs)

• Labelled Markov processes (LMPs)

− and many other variants…

this talk
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Markov decision processes (MDPs)

• Useful for modelling e.g. distributed protocols with failure 
or randomisation

• An MDP is a tuple M = (S, s0, Act, P, L, r):

− S is the state space

− s0 ∈ S is the initial state

− Act is finite set of actions

− P: S × Act × S → [0,1] is the
probability matrix

− L is labelling with atomic propositions

− R: S × Act → Real≥0 is a reward structure

• such that

− each row of P sums up to 0 or 1

− for every state s, at least one a is enabled in s

s1

0.1

warn

s2s3

shutdown
0.9

shutdown

s0

fail off

{ok}

{ok}{ok}
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Probabilistic model checking for MDPs

• To reason formally about MDPs, we use adversaries

− an adversary σ resolves nondeterminism in a MDP M

− also called “scheduler”, “strategy”, “policy”, …

− makes a (possibly randomised) choice, based on history

− induces probability measure PrM
σ over (infinite) paths

• Property specifications: probabilistic and expected reward 

− specify probabilistic property P≥p[φ] in PCTL, φ path property

− PrM
σ (φ) gives probability of φ under adversary σ

− best-/worst-case analysis: quantify over all adversaries

− e.g. M ⊨ P≥p[G “ok”] ⇔ PrM
σ(G “ok”)) ≥ p for all σ

− or just compute e.g. PrM
min (φ) = inf { PrM

σ (G “ok”) | σ ∈ AdvM }

− efficient algorithms and tools exist

− Reward properties involve computing expectations
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Model repair: problem statement

• Assume we have an MDP…

• which does not satisfy a given property, e.g.

− M ⊭ P≥0.99[G “ok”]

• We wish to repair this model so that it does

• Solved for discrete-time Markov chains wrt reachability or 
expected accumulated rewards in [Bartocci et al 2011]

s1

0.1

warn

s2s3

shutdown
0.9

shutdown

s0

fail off

{ok}

{ok}{ok}
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Main idea

• Transform to a parametric MDP

− by adding parameters to each transition that we can modify

• Find instantiations v of parameters such that

− Mparam<v> satisfies property, ie Mparam<v> ⊫ P≥0.99[G “ok”], and 

− some objective function f(v) is minimal (repaired model is nearest 
wrt to some cost/distance measure)

− e.g. f(x,y) = x2 + y2 (sum of squares)

MMMMparamparamparamparam<<<<xxxx,,,,yyyy>>>>=

s1

0.1-y

warn

s2s3

shutdown
0.9+x

shutdown

s0

fail off

{ok}

{ok}{ok}
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Our contribution

• Unfortunately the methods developed for DTMCs do not
transfer to MDPs

− cannot guarantee existence of single rational function over 
parameters

• We extend model repair to general MDPs by approximating
the solution

• Consider both probabilistic and reward properties

• Two complementary approaches implemented in PRISM

• Region-based approach

− based on computing functions describing property depending 
on parameters using constraint programming

• Sampling-based optimisation

− stochastic search through the parameter space

− may yield a suboptimal solution but faster
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Formally…

• Given 

− V set of variables, span(V) set of linear expressions over V

− PCTL formula φ

− MDP M = (S, s0, Act, P, L, r) s.t. M ⊭ φ

− Z: S × Act × S → span(V) transition repair matrix

− z: S × Act → span(V) reward repair matrix

• Define parametric MDP M’ = (S, s0, Act, P+Z, L, r+z)

• The model repair problem for MDP M, formula φ and 
polynomial g over variables V is to find evaluation 
v: V → Real satisfying

− v ∈ arg min arg min arg min arg min g<v> (minimise cost)

− v is a valid evaluation (yielding a valid MDP)

− M’<v> ⊫ φ
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Fast model repair

• Many practical situations demand fast parameter 
adaptation, typically at runtime, to guarantee some 
performance property, e.g.

− self-adaptive systems

− replacement of failed component in multiprocessor systems

• Fast model repair is defined, for b a real-valued bound, Q a 
penalty function, as finding an evaluation satisfying

− g<v>+Q<v> ≤ b and

− running time should be fast, trading off optimality

• The value of b is typically small to keep cost of repair 
sufficiently low though suboptimal 

− b=0.0 allowed but may result in slower repair
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Region-based approach

• Building upon method developed earlier for parametric 
Markov processes in [Hahn, Han and Zhang 2011]

− finding parameter values to guarantee satisfaction of a PCTL 
formula

− assume parameter range, ie interval of values [l,u]

− allows working with hyper-rectangles

• Does not apply to model repair…

− need to ensure probabilities are nonnegative

− problem if repair matrix increases two transitions while 
decreasing another by the same amount

− i.e. constraints are triangles

• Obtain approximate solution...
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More on region-based approach

• Encode the validity of parameter valuations into the 
formula, φvalid , and derive PMDP M’ as before

• Repeatedly subdivide regions into those for which the 
property is valid, invalid and undecided

− point x1=x2=0 is the original (unrepaired) model

• Use constraint solving to compute approximate ε-solution 
(fraction of the parameter space left undecided)

• Can evaluate repair cost g at vertices, then take minimum 
of those values to obtain lower bound 

original 
model

repaired 
model
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Sampling-based approach

• Three methods based on randomised search

• Work with the formulation, for bound b:

− g<v>+Q<v> ≤ b

• where

− Q is a penalty function defined by 

Q<v>=0 if M’<v> ⊫ φ and otherwise some value δ

− used to guide the search towards good valuations

• Challenge: we draw samples according to an unknown 
probability distribution 

− pd(v) = e-βO(v)

− where O is the objective function, β weighting factor

− so need to adapt the three methods to this scenario

− use threshold for maximum number of samples, terminate the 
procedure when good sample reached



26

Markov chain Monte Carlo

• Use the Metropolis-Hastings algorithm

• Generates a series of samples 

− linked in a Markov chain 

− each sample correlated only with the directly preceding
sample

− in the long run, the distribution matches the desired 
probability distribution pd

• Performs random walk about the sample space, sometimes 
accepting and sometimes not
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Cross-Entropy method

• Starts from a family of distributions and attempts to find a 
distribution which is as close as possible to pd

− use Kullback-Leibler (KL) divergence measure

• Works as follows 

− partition the parameter space into cells, parameterised by 
probability that a point from cell is sampled

− generate samples based on the candidate distribution

− tilt the samples towards the new distribution, by minimising 
KL distance over samples
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Particle swarm optimisation

• Based on movement of a bird flock

• Swarm of n particles

− each with velocity, indicating where it is moving to

• Update the velocity vector by randomised combination of

− direction to the best position of i-th particle, and

− direction to best global particle position

• Terminate when norm of velocity smaller than ε
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PRISM support

• Implemented both the region-based and sampling 
approaches in PRISM

− ‘explicit’ engine, written in Java

− region-based approach is a reimplementation of PARAM 2.0

− sampling-based approaches are new implementation

− to be included in a forthcoming release

• Input models specified as parametric PRISM models

− parameters expressed as unevaluated constants

− e.g. const double x;

− repairable transition specified as 0.4 + x

− general purpose, other types of usage

• Properties are given in PCTL, with parameter constants

− new construct constfilter (min, x1*x2, prop)

− filters over parameter values, rather than states
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Case study: network virus

• Parametric model of a network virus

− a grid of connected nodes

− virus spawns/multiplies

− once infected, virus
repeatedly tries to spread
to neighbouring nodes

− there are ‘high’ and ‘low’ 
nodes, with barrier nodes from ‘high’ to ‘low’

− choice of infection by virus probabilistic

− choice of which node to infect nondeterministic

• Property specification

− minimal expected number of attacks until infection of (1,1), 
starting from (N,N), is upper bounded by 20

− probability of detection and of barrier nodes subject to repair 
by increasing plhadd and pbaadd
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Case study: region-based methods

Plot of minimal expected              Checking if minimal exp.
number of attacks                        number of attacks >= 20

Property constfilter(min,…,R{“attacks”}>=20 [ F “inf-11”])

Model has 809 states, ε = 0.05

Optimal value found in 2mins, showing repair values
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Case study: sampling-based methods

• Need to work with the formulation g<v>+Q<v> ≤ b

• Test two bounds, b = 0.0 and b = 0.0225

− MCMC slower for bound b = 0.0, can be unstable for the 
larger bound 

− both CE and PSO are stable

− PSO better performance

• Sampling methods have superior performance wrt region-
based methods

− all terminate within 20s, vs 2 mins for region-based

− 200-500 samples

− PSO mostly able to finish in 5s

• Hence, demonstrated practical applicability for online 
model repair

− trading optimality for speed
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Conclusions

• Formulated and proposed approximate solution to model 
repair for Markov decision processes

− MDPs widely used to model network and security protocols, 
distributed systems with failure, etc

− parametric models integrated within PRISM 

− full PCTL with the reward operator

• Demonstrated

− sampling-based model repair feasible for runtime use

− but scalability is still the biggest challenge

• Model repair for other probabilistic models 

− also adapted to Markov reward models, work in progress

− incl. DTMCs and CTMCs (via discretisation)
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Quantitative verification - Trends

• Being ‘younger’, generally lags behind conventional 
verification

− much smaller model capacity

− compositional reasoning in infancy

− automation of model extraction/adaptation very limited

• Tool usage on the increase, in academic/industrial contexts

− real-time verification/synthesis in embedded systems

− probabilistic verification in security, reliability, performance

• Shift towards greater automation 

− specification mining, model extraction, synthesis, verification, …

• But many challenges remain!
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Future directions

• Many challenges remain

− computational runtime steering, away from danger states, in 
addition to online model repair

− effective model abstraction/reduction techniques

− scalability of monolithic/runtime verification

− approximate methods 

• More challenges not covered in this lecture

− correct-by-construction model synthesis from specifications

− controller synthesis

− more expressive models and logics

− code generation

− new application domains, … 

• and more…
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