
Model Repair for Markov Decision Model Repair for Markov Decision Model Repair for Markov Decision Model Repair for Markov Decision
ProcessesProcessesProcessesProcesses

Marta Kwiatkowska

Department of Computer Science, University of Oxford

TASE 2013, Birmingham

Joint work with: T. Chen, E.M. Hahn, T. Han, H. Qu and L. Zhang

2

Software everywhere

• Electronic devices, ever smaller

− Laptops, phones, sensors…

• Networking

− Wireless & Internet everywhere

• Intelligent spaces

− Buildings, vehicles…

• Systems

− Adaptive

− Context-aware

− Self-*

• From hardware and software, to everyware

− Household objects do information processing

− Software is central

3

Software quality assurance

• Software is a critical component of embedded systems

− software failure costly and life endangering

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Use formal techniques to produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial
transaction twice”

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative verification

4

Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

ModelModelModelModel
FormalFormalFormalFormal
specificationspecificationspecificationspecification

SystemSystemSystemSystem
ValidationValidationValidationValidation

VerificationVerificationVerificationVerification

A
b

s
tr

a
c
t

A
b

s
tr

a
c
t

A
b

s
tr

a
c
t

A
b

s
tr

a
c
t R

e
fin

e
R

e
fin

e
R

e
fin

e
R

e
fin

e

F
o
rm

a
li
s
e

F
o
rm

a
li
s
e

F
o
rm

a
li
s
e

F
o
rm

a
li
s
e

SimulationSimulationSimulationSimulation

Informal
requirements

5

Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

6

Why quantitative verification?

• Real software/systems are quantitative:

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive”

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies

7

Quantitative properties

• Simple properties

− P≤0.01 [F “fail”] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios

− Pmax=? [F≤10 “outage”] – “worst-case probability of an outage
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [G
≤0.02 !“deploy” {“crash”}{max}] - “the maximum

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

8

Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains,
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems

9

Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems

− abstraction refinement (CEGAR) methods

− probabilistic counterexample generation

− assume-guarantee compositional verification

− tool support exists and is widely used, e.g. PRISM, MRMC

10

Tool support: PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL/PCTL*, CSL, LTL, rPATL, costs/rewards, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

• Many import/export options, tool connections

− MRMC, INFAMY, DSD, Petri nets, Matlab, …

• See: http://www.prismmodelchecker.org/

11

Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message

• FireWire root contention

− wired protocol, uses randomisation

− model checking using PRISM

− optimum probability of leader election
by time T for various coin biases

− demonstrated that a biased coin can improve performance

12

This lecture…

• What to do if quantitative verification fails?

• Majority of research to date has focused on verification

− scalability and performance of algorithms

− extending expressiveness of models and logics

− real-world case studies

• Some work to date on counterexamples [Han&Katoen 2009,
Aljazzar&Leue 2009]

− need to capture two types of branching

− but difficult to represent them compactly

• In this lecture, we focus on model repair

− can we fix the model to guarantee that a quantitative property
is satisfied?

− adjust parameters, potentially for use at runtime

13

Quantitative (probabilistic) verification

Input probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Repaired model

System
require-
ments

P<0.01 [F≤t fail]
0.5

0.3

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

0.5

0.1

0.4

14

Overview

• Model repair

− problem statement

− parametric probabilistic models

− property specifications: probability/expectation

• Region-based method

− constraint-based approximate solution

• Sampling-based methods

− randomised search through the parameter space

− Markov chain Monte Carlo, Cross-Entropy and Particle Swarm

• Case study: network virus

15

Probabilistic models

• Discrete-time Markov chains (DTMCs)

− discrete states + probability

− for: randomisation, component failures, unreliable media

• Markov decision processes (MDPs)

− discrete states + probability + nondeterminism

− for: concurrency, control, under-specification, abstraction

• Stochastic multi-player games

• Continuous-time Markov chains (CTMCs)

• Probabilistic timed automata (PTAs)

• Labelled Markov processes (LMPs)

− and many other variants…

this talk

16

Markov decision processes (MDPs)

• Useful for modelling e.g. distributed protocols with failure
or randomisation

• An MDP is a tuple M = (S, s0, Act, P, L, r):

− S is the state space

− s0 ∈ S is the initial state

− Act is finite set of actions

− P: S × Act × S → [0,1] is the
probability matrix

− L is labelling with atomic propositions

− R: S × Act → Real≥0 is a reward structure

• such that

− each row of P sums up to 0 or 1

− for every state s, at least one a is enabled in s

s1

0.1

warn

s2s3

shutdown
0.9

shutdown

s0

fail off

{ok}

{ok}{ok}

17

Probabilistic model checking for MDPs

• To reason formally about MDPs, we use adversaries

− an adversary σ resolves nondeterminism in a MDP M

− also called “scheduler”, “strategy”, “policy”, …

− makes a (possibly randomised) choice, based on history

− induces probability measure PrM
σ over (infinite) paths

• Property specifications: probabilistic and expected reward

− specify probabilistic property P≥p[φ] in PCTL, φ path property

− PrM
σ (φ) gives probability of φ under adversary σ

− best-/worst-case analysis: quantify over all adversaries

− e.g. M ⊨ P≥p[G “ok”] ⇔ PrM
σ(G “ok”)) ≥ p for all σ

− or just compute e.g. PrM
min (φ) = inf { PrM

σ (G “ok”) | σ ∈ AdvM }

− efficient algorithms and tools exist

− Reward properties involve computing expectations

18

Model repair: problem statement

• Assume we have an MDP…

• which does not satisfy a given property, e.g.

− M ⊭ P≥0.99[G “ok”]

• We wish to repair this model so that it does

• Solved for discrete-time Markov chains wrt reachability or
expected accumulated rewards in [Bartocci et al 2011]

s1

0.1

warn

s2s3

shutdown
0.9

shutdown

s0

fail off

{ok}

{ok}{ok}

19

Main idea

• Transform to a parametric MDP

− by adding parameters to each transition that we can modify

• Find instantiations v of parameters such that

− Mparam<v> satisfies property, ie Mparam<v> ⊫ P≥0.99[G “ok”], and

− some objective function f(v) is minimal (repaired model is nearest
wrt to some cost/distance measure)

− e.g. f(x,y) = x2 + y2 (sum of squares)

MMMMparamparamparamparam<<<<xxxx,,,,yyyy>>>>=

s1

0.1-y

warn

s2s3

shutdown
0.9+x

shutdown

s0

fail off

{ok}

{ok}{ok}

20

Our contribution

• Unfortunately the methods developed for DTMCs do not
transfer to MDPs

− cannot guarantee existence of single rational function over
parameters

• We extend model repair to general MDPs by approximating
the solution

• Consider both probabilistic and reward properties

• Two complementary approaches implemented in PRISM

• Region-based approach

− based on computing functions describing property depending
on parameters using constraint programming

• Sampling-based optimisation

− stochastic search through the parameter space

− may yield a suboptimal solution but faster

21

Formally…

• Given

− V set of variables, span(V) set of linear expressions over V

− PCTL formula φ

− MDP M = (S, s0, Act, P, L, r) s.t. M ⊭ φ

− Z: S × Act × S → span(V) transition repair matrix

− z: S × Act → span(V) reward repair matrix

• Define parametric MDP M’ = (S, s0, Act, P+Z, L, r+z)

• The model repair problem for MDP M, formula φ and
polynomial g over variables V is to find evaluation
v: V → Real satisfying

− v ∈ arg min arg min arg min arg min g<v> (minimise cost)

− v is a valid evaluation (yielding a valid MDP)

− M’<v> ⊫ φ

22

Fast model repair

• Many practical situations demand fast parameter
adaptation, typically at runtime, to guarantee some
performance property, e.g.

− self-adaptive systems

− replacement of failed component in multiprocessor systems

• Fast model repair is defined, for b a real-valued bound, Q a
penalty function, as finding an evaluation satisfying

− g<v>+Q<v> ≤ b and

− running time should be fast, trading off optimality

• The value of b is typically small to keep cost of repair
sufficiently low though suboptimal

− b=0.0 allowed but may result in slower repair

23

Region-based approach

• Building upon method developed earlier for parametric
Markov processes in [Hahn, Han and Zhang 2011]

− finding parameter values to guarantee satisfaction of a PCTL
formula

− assume parameter range, ie interval of values [l,u]

− allows working with hyper-rectangles

• Does not apply to model repair…

− need to ensure probabilities are nonnegative

− problem if repair matrix increases two transitions while
decreasing another by the same amount

− i.e. constraints are triangles

• Obtain approximate solution...

24

More on region-based approach

• Encode the validity of parameter valuations into the
formula, φvalid , and derive PMDP M’ as before

• Repeatedly subdivide regions into those for which the
property is valid, invalid and undecided

− point x1=x2=0 is the original (unrepaired) model

• Use constraint solving to compute approximate ε-solution
(fraction of the parameter space left undecided)

• Can evaluate repair cost g at vertices, then take minimum
of those values to obtain lower bound

original
model

repaired
model

25

Sampling-based approach

• Three methods based on randomised search

• Work with the formulation, for bound b:

− g<v>+Q<v> ≤ b

• where

− Q is a penalty function defined by

Q<v>=0 if M’<v> ⊫ φ and otherwise some value δ

− used to guide the search towards good valuations

• Challenge: we draw samples according to an unknown
probability distribution

− pd(v) = e-βO(v)

− where O is the objective function, β weighting factor

− so need to adapt the three methods to this scenario

− use threshold for maximum number of samples, terminate the
procedure when good sample reached

26

Markov chain Monte Carlo

• Use the Metropolis-Hastings algorithm

• Generates a series of samples

− linked in a Markov chain

− each sample correlated only with the directly preceding
sample

− in the long run, the distribution matches the desired
probability distribution pd

• Performs random walk about the sample space, sometimes
accepting and sometimes not

27

Cross-Entropy method

• Starts from a family of distributions and attempts to find a
distribution which is as close as possible to pd

− use Kullback-Leibler (KL) divergence measure

• Works as follows

− partition the parameter space into cells, parameterised by
probability that a point from cell is sampled

− generate samples based on the candidate distribution

− tilt the samples towards the new distribution, by minimising
KL distance over samples

28

Particle swarm optimisation

• Based on movement of a bird flock

• Swarm of n particles

− each with velocity, indicating where it is moving to

• Update the velocity vector by randomised combination of

− direction to the best position of i-th particle, and

− direction to best global particle position

• Terminate when norm of velocity smaller than ε

29

PRISM support

• Implemented both the region-based and sampling
approaches in PRISM

− ‘explicit’ engine, written in Java

− region-based approach is a reimplementation of PARAM 2.0

− sampling-based approaches are new implementation

− to be included in a forthcoming release

• Input models specified as parametric PRISM models

− parameters expressed as unevaluated constants

− e.g. const double x;

− repairable transition specified as 0.4 + x

− general purpose, other types of usage

• Properties are given in PCTL, with parameter constants

− new construct constfilter (min, x1*x2, prop)

− filters over parameter values, rather than states

30

Case study: network virus

• Parametric model of a network virus

− a grid of connected nodes

− virus spawns/multiplies

− once infected, virus
repeatedly tries to spread
to neighbouring nodes

− there are ‘high’ and ‘low’
nodes, with barrier nodes from ‘high’ to ‘low’

− choice of infection by virus probabilistic

− choice of which node to infect nondeterministic

• Property specification

− minimal expected number of attacks until infection of (1,1),
starting from (N,N), is upper bounded by 20

− probability of detection and of barrier nodes subject to repair
by increasing plhadd and pbaadd

31

Case study: region-based methods

Plot of minimal expected Checking if minimal exp.
number of attacks number of attacks >= 20

Property constfilter(min,…,R{“attacks”}>=20 [F “inf-11”])

Model has 809 states, ε = 0.05

Optimal value found in 2mins, showing repair values

32

Case study: sampling-based methods

• Need to work with the formulation g<v>+Q<v> ≤ b

• Test two bounds, b = 0.0 and b = 0.0225

− MCMC slower for bound b = 0.0, can be unstable for the
larger bound

− both CE and PSO are stable

− PSO better performance

• Sampling methods have superior performance wrt region-
based methods

− all terminate within 20s, vs 2 mins for region-based

− 200-500 samples

− PSO mostly able to finish in 5s

• Hence, demonstrated practical applicability for online
model repair

− trading optimality for speed

33

Conclusions

• Formulated and proposed approximate solution to model
repair for Markov decision processes

− MDPs widely used to model network and security protocols,
distributed systems with failure, etc

− parametric models integrated within PRISM

− full PCTL with the reward operator

• Demonstrated

− sampling-based model repair feasible for runtime use

− but scalability is still the biggest challenge

• Model repair for other probabilistic models

− also adapted to Markov reward models, work in progress

− incl. DTMCs and CTMCs (via discretisation)

34

Quantitative verification - Trends

• Being ‘younger’, generally lags behind conventional
verification

− much smaller model capacity

− compositional reasoning in infancy

− automation of model extraction/adaptation very limited

• Tool usage on the increase, in academic/industrial contexts

− real-time verification/synthesis in embedded systems

− probabilistic verification in security, reliability, performance

• Shift towards greater automation

− specification mining, model extraction, synthesis, verification, …

• But many challenges remain!

35

Future directions

• Many challenges remain

− computational runtime steering, away from danger states, in
addition to online model repair

− effective model abstraction/reduction techniques

− scalability of monolithic/runtime verification

− approximate methods

• More challenges not covered in this lecture

− correct-by-construction model synthesis from specifications

− controller synthesis

− more expressive models and logics

− code generation

− new application domains, …

• and more…

36

Acknowledgements

• My collaborators in this work

• Project funding

− ERC, EPSRC LSCITS

− Oxford Martin School, Institute for the Future of Computing

• See also

− PRISM www.prismmodelchecker.org

− www.veriware.org

